
DZiG: Sparsity-Aware Incremental Processing of
Streaming Graphs

Mugilan Mariappan
School of Computing Science

Simon Fraser University

British Columbia, Canada

mmariapp@cs.sfu.ca

Joanna Che
School of Computing Science

Simon Fraser University

British Columbia, Canada

jca241@cs.sfu.ca

Keval Vora
School of Computing Science

Simon Fraser University

British Columbia, Canada

keval@cs.sfu.ca

Abstract

State-of-the-art streaming graph processing systems that

provide Bulk Synchronous Parallel (BSP) guarantees remain

oblivious to the computation sparsity present in iterative

graph algorithms, which severely limits their performance. In

this paper we propose DZiG, a high-performance streaming

graph processing system that retains efficiency in presence

of sparse computations while still guaranteeing BSP seman-

tics. At the heart of DZiG is: (1) a sparsity-aware incremental

processing technique that expresses computations in a recur-

sive manner to be able to safely identify and prune updates

(hence retaining sparsity); (2) a simple change-driven pro-

gramming model that naturally exposes sparsity in iterative

computations; and, (3) an adaptive processing model that au-

tomatically changes the incremental computation strategy to

limit its overheads when computations become very sparse.

DZiG outperforms state-of-the-art streaming graph process-

ing systems, and pushes the boundary of dependency-driven

processing for streaming graphs to over 10 million simul-

taneous mutations, which is orders of magnitude higher

compared to the state-of-the-art systems.

1 Introduction

Recent advances in graph-based analytics coupled with the

increasing interest in analyzing the constantly-evolving

graph data has led to the development of several dynamic

graph management and analytics solutions including Graph-

Bolt [32], Tornado [50], and others [11, 48, 57].

Continuous query analysis over fast changing graphs is

achieved by streaming graph processing where the results

of the query are continuously recomputed as graph gets

updated in order to make the results consistent with the

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

EuroSys ’21, April 26–28, 2021, Online, United Kingdom

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8334-9/21/04. . . $15.00

https://doi.org/10.1145/3447786.3456230

latest version of the graph structure. Systems designed for

streaming graph processing, like GraphBolt and Tornado,

rely on incremental processing techniques where the results

that were already computed prior to graph mutation are

adjusted based on the graph structure updates instead of

restarting the entire computation from scratch. Such incre-

mental processing reduces the amount of computation to be

(roughly) in the order of changes to the graph structure by

reusing results that were computed prior to graph mutation.

Recent streaming graph processing systems perform

dependency-driven incremental processing [32, 57] where in-

termediate values are tracked as computations progress,

and later upon graph mutation, these values are incremen-

tally adjusted to reflect changes resulting from graph mu-

tations. Depending on the nature of the graph algorithm,

such dependency-driven processing can provide Bulk Syn-

chronous Parallel (BSP) [54] guarantees (i.e., generates fi-

nal results equivalent to a BSP execution that starts from

scratch) or allow asynchronous execution. For example, Kick-

Starter [57] leverages algorithmic properties like monotonic

convergence to capture lightweight dependencies in the form

of trees, and performs a trimming process during which re-

sults are transformed based on the monotonic relationship

among neighboring values to compute useful intermediate

and final results. GraphBolt [32], on the other hand, provides

synchronous processing semantics that models BSP execu-

tion where computation is performed in a series of global

supersteps. It does so by capturing dependencies across inter-

mediate vertex values, and performing a refinement process

that propagates (direct and transitive) changes iteration-by-

iteration to reflect mutations in graph structure. Since the

dependency-driven refinement process does not rely on algo-

rithmic properties like monotonicity, it is broadly applicable

to general class of graph algorithms.

However, the dependency-driven incremental refinement

strategy proposed in literature [32] remains oblivious to spar-

sity coming from the convergent nature of iterative graph

algorithms. Specifically, vertex values start stabilizing as it-

erations progress; this represents computation sparsity that

is often leveraged by techniques like selective scheduling in

static graph processing systems [39, 51, 67]. The incremen-

tal refinement process, however, identifies effects of graph

mutations as changes between the values computed prior to

83

EuroSys ’21, April 26–28, 2021, Online, United Kingdom Mugilan Mariappan, Joanna Che, and Keval Vora

: Incremental update functionΔU

U

G0

D0

R0

Δ1

R1

ΔR1

U

Δ2

R2

ΔR2

. . .

. . .

Stream of
Graph Updates

Incrementally
Updating Dependencies

G0 : Initial graph
R0 : Final result for G0

D0 : Dependency information
for R0 on G0

ΔRk : Changes to Rk-1 (to produce Rk)
Rk : Final result for Gk = Gk-1 Δk

Δk : Changes in graph structure

Time

Δ Δ

Figure 1. Dependency-driven incremental processing of

streaming graphs. As graph updates get applied (either one

at a time or in batches), the dependency information (i.e.,

intermediate values) gets incrementally adjusted to produce

final results corresponding to those graph updates.

mutation and those that are incrementally computed during

the refinement process. Therefore, even when vertex values

stabilize across consecutive iterations, such a computation

forces the refinement process to propagate the same change

value for a given vertex across all iterations until the change

itself diminishes naturally. This means, changes are prop-

agated irrespective of whether the vertex value stabilizes

(either during old execution prior to mutation, or during

the refinement process), which limits the performance of

incremental refinement. Furthermore, such change propaga-

tions cannot be directly pruned by simply verifying whether

vertex values stop changing since those propagations are

necessary to guarantee correctness; this is because of the

fundamental way in which the refinement process identifies

and operates on changes.

By not fully retaining the computation sparsity, the re-

finement strategy remains effective for only a few initial

iterations where computing from scratch (i.e., incremental

computation without dependency-driven refinement) would

involve more work. For later iterations where computations

become sparse, the refinement strategy ends up being rel-

atively inefficient, and instead switching to the traditional

incremental computation (without dependency-driven re-

finement) ends up being a better choice to retain end-to-end

performance, as done by strategies like hybrid execution [32].

In this paper, we address the challenge of making the

dependency-driven incremental refinement process an effec-

tive strategy across multiple iterations, especially when com-

putation becomes sparse. We develop DZiG 1, a streaming

graph processing system that retains efficiency in presence

of sparse computations and guarantees Bulk Synchronous

Parallel semantics. To do so, we first characterize the spar-

sity in convergence-based iterative graph computations, and

1DZiG is incorporated in GraphBolt: https://github.com/pdclab/graphbolt

then, we design a sparsity-aware incremental refinement

technique by expressing computations recursively in terms

of propagating ‘updates to the changes’ made in previous

iterations. By doing so, the changes resulting from graph

mutations can be directly captured as differences across con-

secutive iterations, which allows DZiG to safely identify and

maintain sparsity throughout the refinement process.

Furthermore, we develop several important techniques

that enable DZiG’s sparsity-aware incremental processing

to deliver high performance with easier programmability.

First, we equip DZiGwith a dependency trackingmechanism

that tracks aggregation values corresponding to changes ob-

served by outgoing neighbors, instead of just the aggregation

values that get computed at any point; this guarantees ac-

curate results in presence of custom propagation rules (e.g.,

propagate the value only if it is greater than a threshold

value), which are common across several graph computa-

tions. Second, we design a simple change-driven program-

ming model that naturally exposes sparsity in iterative com-

putations to DZiG’s underlying runtime, without exposing

the dependency management/addressing issues to end users.

Third, we develop an adaptive incremental computation strat-

egy in DZiG that actively monitors the execution to control

its overheads, and automatically switches the computation to

propagate direct changes when computations become very

sparse. And finally, we use dynamic adjacency lists in DZiG

that not only enables fast graph mutation, but also retains

high efficiency for parallel edge and vertex operations during

the refinement process.

Our evaluation shows that our sparsity-aware refinement

strategy pushes the boundary of effectiveness of dependency-

driven incremental processing for streaming graphs to over

10 million simultaneous mutations (even when strategies

like hybrid/adaptive switching are not used), which is or-

ders of magnitude higher compared to the state-of-the art.

Furthermore, our sparsity-aware refinement enables DZiG

to outperform GraphBolt, the state-of-the-art system that

provides BSP guarantees. Finally, DZiG also delivers high

performance on traditional graph processing benchmarks

like PageRank and shortest paths, hence significantly out-

performing other streaming graph processing systems like

Aspen [14], GraphOne [27], LLAMA [31] and Stinger [15].

2 Background and Motivation

We briefly review the streaming graph processing model and

the relevant incremental processing techniques.

2.1 Streaming Graph Processing Model

A streaming graph is a graph whose structure keeps on

changing via a continuous stream of graph updates (e.g., ad-

dition and deletion of vertices and edges). Streaming graph

processing systems [32, 48, 50, 57] operate on streaming

graphs to produce results consistent with the latest graph

84

DZiG: Sparsity-Aware Incremental Processing of Streaming Graphs EuroSys ’21, April 26–28, 2021, Online, United Kingdom

1 float [] prev_pr = {0, 0, ...};

2 float [] pr = {0.15, 0.15, ...};

3 float [] sum = {0, 0, ...};

4 Frontier curr = activateAll ();

5 Frontier next = empty();

6 while(curr not empty) {

7 parallel_for u in curr {

8 float change = (pr[u] - prev_pr[u]) / numOutNbrs(u);

9 parallel_for v in outNeighbors(u) {

10 atomicAdd (&sum[v], change);

11 next.add(v);

12 }

13 }

14 swap(curr , next);

15 next.clear ();

16 parallel_for v in curr {

17 float rank = 0.15 + 0.85 * sum[v];

18 if(fabs(rank - pr[v]) > ϵ) {

19 prev_pr[v] = pr[v];

20 pr[v] = rank;

21 next.add(v);

22 }

23 }

24 swap(curr , next);

25 next.clear ();

26 }

Figure 2. Incremental PageRank example.

structure. These systems rely on incremental computation

where, upon graph mutation, they reuse the results that were

computed before the graph structure mutated, so that the

magnitude of computation remains (roughly) in the order of

changes to the graph structure. Since different graph algo-

rithms require different processing semantics to guarantee

correctness, the incremental computation in these systems

is tailored to guarantee synchronous processing (BSP [54])

semantics (e.g., in GraphBolt [32]), or enable asynchronous

execution (e.g., in Tornado [50] and KickStarter [57]).

This work focuses on streaming graph processing that

guarantees synchronous semantics, where the results pro-

duced by the incremental computation are the same as those

produced by a BSP execution starting from scratch (i.e., BSP

execution without reusing results).

With synchronous processing, computation is performed

in a series of global supersteps such that values in a given

superstep (or iteration) are computed based on values from

the previous superstep. Figure 2 shows an example of PageR-

ank for static graph that follows synchronous processing:

during each iteration, sum is computed using pr from the

previous iteration (lines 8-10), and the visibility of values is

controlled by separating out the pr computation (lines 16-23)

after the old pr values have been used (lines 7-13). Such clear

separation of values being generated vs. values being used

enables end users to easily develop complex graph-based

analytics since the correctness/convergence properties can

be clearly reasoned.

For streaming graphs, systems like GraphBolt [32] guar-

antee synchronous semantics using dependency-driven incre-

mental computation, as described next.

Figure 3. Incremental refinement in GraphBolt when edge

(t,w) is added and (t,v) is removed. Note that edges (v, x)
and (w, x) are active in iteration 4 (marked in red) even

though both v andw stopped changing in iteration 3. This

is because x ’s old value (prior to edge modifications) keeps

changing till iteration 5 and its old value at iteration 4 does

not yet have the new information from v andw . So, v andw
have to push the difference to x at iteration 4. Similarly,

these edges are active at iteration 5 even though v andw
remain same in iteration 4.

2.2 Dependency-Driven Incremental Computing

In this technique, value dependencies (i.e., information about

how intermediate values affect each other to produce the fi-

nal result) are tracked in memory as computation progresses,

and later upon graph mutation, they are incrementally ad-

justed to produce correct final results (as shown in Figure 1).

Since dependencies in graph computation are based on the

structure of the input graph, the value dependencies are

tracked in form of intermediate aggregation results on ver-

tices instead of all the intermediate values propagating across

edges, resulting in a much smaller amount of dependency

information. Hence, in our PageRank example from Figure 2,

the sum values are tracked instead of the individual change

values that are pushed to outgoing edges.

Upon graph mutation, an incremental refinement process

iteratively corrects the tracked aggregation values. In each

iteration, changes in vertex values get propagated across

edges, and they get merged into the aggregation values to

correctly reflect the (direct and transitive) effects of graph

mutation. The changes in values are captured based on re-

sults computed prior to graph mutation. This means, if a

vertex’s value at a given iteration gets updated due to incre-

mental refinement, the difference between the updated value

and its original value (prior to graph mutation) is propagated

in the subsequent iteration.

2.3 Problem: Sparsity in Iterative Computations

Dependency-driven incremental refinement computes

changes directly from the results computed prior to graph

mutation. While such incremental computation is effective

with dense computations, its benefits reduce as computa-

tions become sparse. We showcase this issue with the help

85

EuroSys ’21, April 26–28, 2021, Online, United Kingdom Mugilan Mariappan, Joanna Che, and Keval Vora

2 4 6 8 10
Iteration

0.00

0.25

0.50

0.75

1.00

It
er

at
io

n
Ti

m
e

(s
)

Res-Inc Time
GraphBolt Time

Res-Inc Edges
GraphBolt Edges

0

5

10

15

20

Edges
Processed

(×
1E

8)

4E8

(a)

E1 E2 E3 E4 E5
Executions

0

1

2

3

4

5

Ti
m

e
(N

or
m

.B
es

tS
w

it
ch

)

GraphBolt (Switch = 4)
GraphBolt (Switch = 6)

GraphBolt (Switch = 8)
GraphBolt (No Switch)

(b)

Figure 4. Performance of dependency-driven incremental

refinement [32] (GraphBolt) and incremental processing

that restarts from scratch (Res-Inc) for Collaborative

Filtering on Twitter [28] graph.

of an example. Figure 3 shows an example graph on the left

where a new edge (t,w) is added and the existing edge (t,v)
is deleted, and on the right it shows the resulting incremen-

tal refinement performed by [32]. Since u’s value is never
dependent on these two edges, its value does not change in

any iteration (relative to its old value for the corresponding

iteration prior to graph mutation). Hence, u does not propa-

gate any difference to x throughout the refinement process.

On the other hand, both v and w change in iteration 1 (v
changes from 3 to 4, andw changes from 2 to 4), and hence,

they propagate their differences to x in iteration 2, resulting

in x ’s value to change from 7 to 10. In iteration 3, however,

values for v andw remain exactly same as those in iteration

2; while this represents an opportunity to skip propagating

the differences to x , the old value of x (8 in iter 4) is based on

the old values of v (2 in iter 3) andw (2 in iter 3), and hence,

the differences are still propagated to change the value of x
from 8 to 9. This means, even though values stop changing

at a given iteration, their effects are propagated (edge com-

putations shown in red) across subsequent iterations until

the outgoing neighbor’s value stops changing.

We profiled the impact of this behavior on an incremental

Collaborative Filtering computation [65] over a streaming

Twitter [28] graph. Figure 4a shows the number of edges pro-

cessed in each iteration by dependency-driven incremental

computation [32] and by the traditional incremental compu-

tation that restarts from scratch [36, 51] (i.e., no dependency-

driven refinement). As we can see, with dependency-driven

refinement, the number of edges processed in each itera-

tion increases as iterations progress; whereas it decreases (as

expected) with the traditional incremental computation. In

fact, after 5 iterations, traditional incremental computation

processes fewer edges than using the refinement process.

The main reason why incremental refinement in [32] per-

forms those unnecessary edge computations is because it

computes changes between values before and after graph

mutation, which prevents it from leveraging sparsity when

values within an execution (either before or after graph mu-

tation) start stabilizing. Solutions like hybrid execution (also

used in [32]) eliminate the slowdowns in later iterations by

performing dependency-driven incremental refinement only

for few iterations and then dynamically switching to tradi-

tional incremental computation in the remaining iterations.

However, the switching point needs to be manually tuned for

each execution since different mutations result in different

amounts of computation; Figure 4b shows that on different

executions, different switch points result in drastically dif-

ferent performance, and there is no single switch point that

gives the best performance across all the executions. Further-

more, relying on such a solution would fundamentally mean

that dependency-driven incremental refinement is useful

only when computations are dense.

In this work, we address the following question: how do we

perform dependency-driven incremental processing of stream-

ing graphs that retains high performance across iterations

where computations become sparse?

3 Overview of DZiG

DZiG is a streaming graph processing system that guaran-

tees synchronous (BSP) processing semantics and retains

efficiency in presence of sparse computations. It builds over

the design philosophy of GraphBolt [32]: as computation

progresses, DZiG tracks value dependencies to capture the

relationship between the intermediate and final results, and

then upon graph mutation, it performs incremental refine-

ment to efficiently compute final results.

DZiG uses dynamic adjacency lists that provide fast graph

mutation while retaining high efficiency for parallel edge

and vertex operations. The strength of DZiG lies in its novel

sparsity-aware incremental refinement strategy, that aggres-

sively reduces the amount of computation performed upon

graph mutation. Furthermore, DZiG incorporates an adap-

tive sparse incremental processing strategy that automati-

cally changes the manner in which incremental computa-

tion gets performed in order to manage the overheads of

the sparsity-aware refinement strategy. DZiG uses a simple

change-driven programming model, and captures the de-

pendency information accurately so that differences can be

correctly computed even in presence of custom constraints

that block edge computations (e.g., floating-point based com-

putations).

Section 4 formalizes the sparsity in iterative graph compu-

tations, and develops a refinement strategy that actively iden-

tifies and retains computation sparsity. Section 5 presents

how sparsity-aware processing is achieved in DZiG.

4 DelZeros & Incremental Refinement

We first formalize DelZero updates, and then present the

incremental refinement strategy based on DelZeros.

4.1 DelZero Semantics

Due to the convergent nature of iterative graph computa-

tions, vertex values stop changing as iterations progress.

86

DZiG: Sparsity-Aware Incremental Processing of Streaming Graphs EuroSys ’21, April 26–28, 2021, Online, United Kingdom

Floating-point based graph algorithms like PageRank, rely

on custom threshold checks (e.g., 1e-2 tolerance) to deter-

mine whether a newly computed vertex value is different

enough compared to its previous value, so that minor value

changes (ones that are smaller than the threshold) are not

propagated further in the graph. We capture such kind of

minor/no value changes as DelZeros.

Formally, let δi (v) be the value propagated by vertex v to

its outgoing neighbors in iteration i+1.With incremental pro-

cessing, δi (v) is based on change in v’s value computed in it-

eration i . For example, in Figure 2, δi (u) is
pr [u] − prev_pr [u]

|out_neiдhbors(u) |

which is computed on line 8 and propagated to v on line 10.

We define DelZero as:

δi (v) = ∅ iff |vi −vi−1 | ≤ ϵ

where vi and vi−1 are the values of v computed at itera-

tions i and i − 1 respectively.

For vertices that observeminor/no change in their values, the

resulting δ (∗) value is suppressed by∅ to represent that they

are not propagated to the neighboring vertices (similar to

if-condition on line 18 in Figure 2). Hence, DelZeros enable

sparse computations where vertex values are incrementally

computed based on only the incoming values that change.

Our DelZero formulation does not enforce that vertex

values remain same in the remainder of the execution. It

simply captures those propagations across edges that do not

happen in a given iteration due to no change in vertex values.

Generalization: Certain algorithms like Belief Propaga-

tion [24] compute δ (∗) using both source and destination

vertex values along with the corresponding edge weights. To

capture such cases, δ should be parameterized by both the

vertices, i.e., it becomes δi (v,w) wherew is the destination

vertex. To simplify exposition, we do not showw in δi (v) for
the common case of algorithms.

4.2 DelZero-Aware Incremental Refinement

To exploit the sparsity coming fromDelZeros, the incremen-

tal refinement process must be able to identify DelZeros so

that their propagations (and the computations they cause

on destination vertices) can be skipped. Since DelZeros

are defined across consecutive iterations, we express our

incremental computation recursively in terms of δi (∗) values.
Formally, let дi (v) be the aggregated value of vertex v

at iteration i (e.g., sum on line 17 in Figure 2). To reflect

changes for the transformed graph GT , our DelZero-aware

refinement strategy computes дTi (v) as:

дTi (v) = дi (v)
⊕

ΔTi (v) (1)

where ΔTi (v) is defined recursively as:

ΔTi (v) = Δ
T
i−1(v)

⊎

∀e=(u ,v)∈Ea
s .t . δi−1(u)�∅

δi−1(u)
⋃
–

∀e=(u ,v)∈Ed
s .t . δi−1(u)�∅

δi−1(u)

⋃
–

∀e=(u ,v)∈Ec

s .t . δi−1(u)�∅

δi−1(u)
⊎

∀e=(u ,v)∈Ec

s .t . δT
i−1(u)�∅

δ Ti−1(u) (2)

and
⊕

is the aggregation operator (e.g., atomicAdd in Fig-

ure 2),
⊎

and
⋃
- are incremental aggregation operators that

add and remove contributions respectively, and δ T is value

propagated based on the new values for GT . Since ΔTi−1(v)
recursively captures all the (direct and transitive) changes

up to the previous iteration, the remaining four components

in Eq. 2 deal with changes relative to the previous iteration

only, i.e., in form of δi−1(∗) values:

Additions. Newly added edges in Ea propagate δi−1(u) that
would have been propagated if the edge was already

present.

Deletions. Deleted edges in Ed retract δi−1(u) that would
never have been propagated if the edge was never

present.

Transitive Changes. Ec denotes the outgoing edges of ver-
tices that are transitively affected (due to the refinement

process) in the previous iteration. The incoming edges in

Ec retract δi−1(u) that is based on old values, and propa-

gate δ Ti−1(u) that is based on new values.

Since all the above changes are across vertex values from

consecutive iterations (either for the original graphG or for

the transformed graph GT), the preconditions on edges in

Eq. 2 directly eliminate computations based on DelZeros,

making our incremental refinement DelZero-aware.

Illustrative Example: Figure 5 illustrates how our

DelZero-aware refinement changes x ’s values while main-

taining sparsity as iterations progress for our example graph

from Figure 3. For iteration 2, edge (w, x) retracts the change
inw ’s value across iterations 1 and 0 in G (shown with neg-

ative symbol: −(2 − 3)) and propagates the change in w’s

value across iterations 1 and 0 in GT (shown with positive

symbol: +(4 − 3)). For iteration 3, edge (w, x) only propa-

gates the change inw ’s value across iterations 2 and 1 inGT

(+(1 − 4)), and it does not retract any change in G sincew ’s

value remains same (w ’s value forG is 2 in iterations 1 and 2).

Similarly in iteration 4,w does not propagate any changes as

its value does not change across iterations 3 and 2 in both G
andGT . Thus, our DelZero-aware incremental refinement

retains sparsity corresponding to both, G and GT .

Correctness of DelZero-Aware Refinement: Our

DelZero-aware refinement strategy guarantees synchro-

nous processing semantics (same as GraphBolt [32]), i.e.,

it produces the same results as those computed by a BSP

execution from scratch.

87

EuroSys ’21, April 26–28, 2021, Online, United Kingdom Mugilan Mariappan, Joanna Che, and Keval Vora

Theorem 4.1. With DelZero-aware incremental refinement,

∀i > 0, ∀v ∈ V , and ∀(u,v) ∈ ET , дTi (v) is computed by

incorporating value changes from iteration i − 1 to дTi−1(v).

Proof. We prove this by induction over i .
— Base Case (i = 1): In Eq. 2, ΔT0 is the identity value (e.g., 0

for sum aggregation) and Ec captures all the outgoing edges

of vertices that are sources of edges in Ea ∪ Ed . Hence, the
contributions added and removed by the incremental aggre-

gation are direct adjustments resulting from mutated edges.

— Induction Hypothesis (i = k):

дTk (v) = д
T
k−1(v)

⊎

∀e=(u ,v)∈ET

s .t . δk−1(u)�∅

δTk−1(u)

— Induction Step (i = k + 1): Let
Á

be the inverse operator

of
⊕

. From Eq. 1, we have:

ΔTk (v) = д
T
k (v)

á
дk (v)

Substituting ΔT
k
(v) in the equation for ΔT

k+1
(v), we get:

дTk+1(v) = д
T
k (v)

⊕
дk+1(v)

á
дk (v)⊎

∀e=(u ,v)∈Ea
s .t . δk (u)�∅

δk (u)
⋃
–

∀e=(u ,v)∈Ed
s .t . δk (u)�∅

δk (u)

⋃
–

∀e=(u ,v)∈Ec

s .t . δk (u)�∅

δk (u)
⊎

∀e=(u ,v)∈Ec

s .t . δT
k
(u)�∅

δ Tk (u)

Here, дk+1(v)
Á

дk (v) represents the incremental compu-

tation that propagates all the changes from iteration k to

iteration k + 1. This means дk+1(v)
Á

дk (v) =
⊎

∀e=(u ,v)∈E
s .t . δk (u)�∅

δk (u),

and hence:

дTk+1(v) = д
T
k (v)

⊎

∀e=(u ,v)∈E
s .t . δk (u)�∅

δk (u)
⊎

∀e=(u ,v)∈Ea
s .t . δk (u)�∅

δk (u)
⋃
–

∀e=(u ,v)∈Ed
s .t . δk (u)�∅

δk (u)

⋃
–

∀e=(u ,v)∈Ec

s .t . δk (u)�∅

δk (u)
⊎

∀e=(u ,v)∈Ec

s .t . δT
k
(u)�∅

δ Tk (u)

The incremental aggregation operators above capture all the

old contributions for GT (first three terms:
⊎
,
⊎

and
⋃
-),

and then adjust them for the new contributions based on the

transitive effects of graph mutation (remaining two terms:
⋃
-

and
⊎

). Hence:

дTk+1(v) = д
T
k (v)

⊎

∀e=(u ,v)∈ET

s .t . δk (u)�∅

δTk (u)

�

Sparsity-Awareness vs. GraphBolt: While we need to in-

corporate updated values relative to old values from G, our
DelZero-aware strategy does not explicitly compare and

compute differences between values for G and GT . This is

Figure 5. DelZero-aware incremental refinement of x for

our example from Figure 3. Since v’s value in iteration 2

remains same for GT , it does not propagate the difference

(+(4-4) =⇒ DelZero) in iteration 3. Similarly, no

propagations in later iterations as v andw do not change.

because we express the incremental computation relative to

ΔTi−1(v), which recursively captures the difference in values

for G and for GT up to iteration i − 1, and hence, we only

need to incrementally incorporate the changes correspond-

ing to the previous iteration, separately for G and for GT .

In comparison, the refinement process in GraphBolt [32]

directly computes differences between values for G and GT ,

which does not allow it to identify DelZeros across con-

secutive iterations in G and in GT . Furthermore, it cannot

skip propagating its changes by simply verifying whether

vertex values stop changing in G or in GT since the changes

it operates on are necessary to guarantee correctness.

5 DelZero-Aware Processing in DZiG

Using the above DelZero-aware refinement strategy, we

develop DZiG system. In this section we focus on three

key components of DZiG: first, the dependency tracking

mechanism that enables accurate incremental computation;

second, the incremental processing model that performs

DelZero-aware refinement, along with its programming

API to express graph computations; and third, the adaptive

execution model that automatically switches the incremental

processing strategy depending on computation sparsity.

5.1 Accurate Tracking of Value Dependencies

Since our DelZero-aware refinement strategy operates on

aggregation values, DZiG tracks dependencies in the form of

aggregation values for vertices. Depending on how DelZe-

ros get defined in the user algorithm, the values visible to the

target vertices of (inactive) edges may not be exactly equiv-

alent to the aggregation values of the source vertices. For

example, floating point computations often define DelZe-

ros as values below a certain threshold (e.g., 1e-2 tolerance

in PageRank); in such cases, minor changes in aggregation

88

DZiG: Sparsity-Aware Incremental Processing of Streaming Graphs EuroSys ’21, April 26–28, 2021, Online, United Kingdom

Iter 2 4 5 6 7 8 9 10

Vertices 221K 632K 1.2M 1.6M 1.9M 2.0M 2.1M 2.1M

Table 1. PageRank on Wiki [60] graph with 1K edge

mutations: number of vertices with over 1% relative error

after each iteration.

values do not result in differences that get propagated across

edges. If incremental refinement is done only based on ag-

gregation values, the resulting changes that get propagated

to outgoing neighbors may not be accurate. Furthermore,

as the refinement process progresses, such inaccuracies in-

crease since they get propagated throughout the graph. We

measured this behavior for PageRank by calculating the rel-

ative error between vertex values resulting from refinement

based on aggregation values alone, and those resulting from

a computation without incremental refinement. As shown

in Table 1 the number of vertices with relative error greater

than 1% increases quickly as iterations progress, rising up

to 32% of vertices within 10 iterations. While the magni-

tude of inaccuracies is small enough, the inaccuracies keep

accumulating across multiple refinement passes (resulting

from multiple mutation rounds), which further diverges the

results as the graph structure keeps mutating.

To compute accurate final results that are equivalent to

those generated by a BSP execution, our refinement process

computes changes w.r.t. values whose effects were visible

to outgoing neighbors. Hence, DZiG tracks the aggregation

values corresponding to those that were propagated along

with the aggregation values that capture the minor updates

(similar to GraphBolt [32]). This allows the DelZero-aware

refinement process to correctly compute the changes: the

new values are computed using the aggregation values that

contain minor updates (i.e., ones that may not be visible to

neighbors) so that no updates are lost, while the changes

are computed based on aggregation values corresponding to

those that were propagated.

Tracking in Memory: Tracking aggregation values re-

quires additional memory apart from the memory consumed

by the dynamic graph data structure and the final vertex val-

ues. Traditional incremental processing techniques like [8]

track all the individual values propagated across the edges

which ends up demanding O
(
|E | + |V |

)
memory. Since ag-

gregation values in DZiG are tracked at vertex-level (similar

to [32]), they require only O
(
|V |

)
memory. As shown later

in Section 6.6, maintaining aggregation values in DZiG con-

sumes only 3-13% additional memory per iteration.

5.2 DelZero-Aware Incremental Refinement

TheDelZero-aware incremental refinement iteratively prop-

agates differences, as modelled in Eq. 2, using edge-parallel

and vertex-parallel operations. In each iteration, first the

direct changes resulting from edge additions and deletions

are propagated, and then transitive changes are propagated,

based on which final vertex value gets recomputed.

27 VValueType [] oldVVal = {...}; // Vertex values for oldG

28 VValueType [] newVVal = {...}; // Vertex values for newG

29 AggregationType [][] agg = {...}; // Aggregation values

30 DeltaType [] delta = {...}; // Changes due to refinement

32 void ref ine (EdgeList eAdditions , EdgeList eDeletions ,

Graph oldG , Graph newG) {

33 EdgeList eMutations = union(eAdditions , eDeletions);

34 Frontier vChanged = getTargets(eMutations);

35 Frontier vUpdated = getSources(eMutations);

36 for i in [1 .. k] {

37 // Direct changes

38 refineEdges (eAdditions , addChange , oldVVal , oldG , i);

39 refineEdges (eDeletions , removeChange , oldVVal ,oldG ,i);

40 // Transitive changes

41 refineOutEdges(vUpdated , addChange , newVVal , newG , i);

42 refineOutEdges(vUpdated , removeChange ,oldVVal ,oldG ,i);

43 vDest = getTargets(E_update);

44 vChanged = union(vChanged , vDest);

45 vUpdated = re f ineVer t i ce s (vChanged , newG , i);

46 }

47 }

49 void refineEdges (EdgeList edges , AggregationOp aOp ,

VValueType [] vVal , Graph G, int i) {

50 parallel_for e = (u, v) in edges {

51 if notDelZero(vVal[u][i], vVal[u][i-1]) {

52 DeltaType vChange = vertexChange(u, vVal[u][i],

vVal[u][i-1], G);

53 DeltaType eChange = edgeChange(edge(u, v), vChange ,

vVal[u][i], vVal[u][i-1], G);

54 aOp(&delta[v], eChange);

55 }

56 }

57 }

59 void refineOutEdges(Frontier activeV , AggregationOp aOp ,

VValueType [] vVal , Graph G, int i) {

60 parallel_for u in activeV {

61 if notDelZero(vVal[u][i], vVal[u][i-1]) {

62 DeltaType vChange = vertexChange(u, vVal[u][i],

vVal[u][i-1], G);

63 parallel_for v in outNgh(u) {

64 DeltaType eChange = edgeChange(edge(u, v),

vChange , vVal[u][i], vVal[u][i-1], G);

65 aOp(&delta[v], eChange);

66 }

67 }

68 }

69 }

71 Frontier re f ineVer t i ce s (Frontier activeV , Graph G, int i){

72 Frontier vUpdated;

73 parallel_for v in activeV {

74 addChange (&agg[v][i+1], delta[v]);

75 new_value = computeVertex(v, agg , newVVal[v][i], G);

76 if notDelZero(new_value , newVVal[v][i]) {

77 newVVal[v][i+1] = new_value;

78 vUpdated.add(v);

79 } else { newVVal[v][i+1] = newVVal[v][i]; }

80 }

81 return vUpdated;

82 }

Figure 6. DelZero-aware incremental refinement in DZiG.

The functions marked in blue are DZiG internal functions,

and those in purple are callbacks to user functions. Figure 7

shows PageRank program written using the user functions.

Figure 6 shows the refine() function that per-

forms DelZero-aware incremental refinement. The

refineEdges() and refineVertices() functions invoke

89

EuroSys ’21, April 26–28, 2021, Online, United Kingdom Mugilan Mariappan, Joanna Che, and Keval Vora

83 bool notDelZero(VValueType oldVal , VValueType newVal) {

84 return fabs(newVal - oldVal) > epsilon;

85 }

86 DeltaType vertexChange(VId v, VValueType oldVal ,

VValueType newVal , Graph G) {

87 return (newVal - oldVal) / G.out_degree[v];

88 }

89 DeltaType edgeChange(Edge e, DeltaType change ,

VValueType oldVal , VValueType newVal , Graph G) {

90 return change * G.edge_weight[e];

91 }

92 void addChange(AggregationType* aggr , DeltaType delta) {

93 atomicAdd(aggr , delta);

94 }

95 void removeChange(AggregationType* aggr , DeltaType delta){

96 atomicSubtract(aggr , delta);

97 }

98 VValueType computeVertex(VId v, AggregationType aggr ,

VValueType oldVal , Graph G) {

99 return 0.15 + (0.85 * aggr);

100 }

Figure 7.Weighted PageRank program written on DZiG.

101 refineOutEdges(vUpdated , oldVVal , newVVal , oldG , newG ,

addRemoveChange , i);

Figure 8. Merging Transitive Differences. Line 101 replaces

lines 41-42 in Figure 6 to extract efficiency.

102 void addRemoveChange(AggregationType aggr ,

DeltaType oldDelta , DeltaType newDelta) {

103 atomicAdd (&aggr , newDelta - oldDelta);

104 }

Figure 9.Merged update for Weighted PageRank.

the user functions in parallel on edges and vertices respec-

tively, and refineOutEdges() is similar to refineEdges()

except that it operates on edges of active vertices instead of

an edge list.

The refinement process iteratively call user-defined func-

tions to identify changes, incrementally adjust the aggrega-

tion values, compute the vertex value, and more importantly

identify values that are not DelZeros (notDelZero()). Fig-

ure 7 shows how weighted PageRank is implemented using

the user-defined functions. To process the change for a given

edge, the edge computation is split into two components:

the first component computes the difference resulting from

source vertex’s value (lines 52 and 62), and the second compo-

nent updates this difference based on edge weights or target

vertex value (lines 53 and 64). For example, in PageRank (Fig-

ure 7), the vertex component in vertexChange() computes

the difference in ranks that must be propagated to the outgo-

ing edges, and then the edge component in edgeChange()

multiplies the edge weight with the computed difference.

Hence, the first component does not get recomputed multi-

ple times for the outgoing edges (i.e., eliminates redundancy).

Finally, the difference gets incrementally aggregated using

addChange() and removeChange() calls.

The differences get computed only for updates that are not

DelZeros. This is ensured by notDelZero() checks on lines

51 and 61, which eliminates DelZeros in both, the original

graph (prior to mutation) and the updated graph. Also, after

the vertex value gets computed using the differences, it is

verified by notDelZero() (line 76), so that the vertex gets

scheduled for the next iteration only if the new vertex value

is significantly different.

Merging Transitive Differences: The transitive changes

are performed by removing the old change and adding the

new change (lines 41-42). Since these two steps are per-

formed on the same set of edges (i.e., outgoing edges of

vertices in vUpdated), they can be merged into a single step.

By doing so, the same set of edges are not iterated twice,

which improves performance.

Figure 8 shows the merged call to refineEdges() (re-

places lines 41-42) that calls addRemoveChange() which

is a combination of the two steps. While the default im-

plementation of addRemoveChange() calls addChange()

followed by removeChange(), it can be optimized to effi-

ciently process the change. For example, Figure 9 shows how

addRemoveChange() performs only a single atomic write

instead of two separate atomic writes. While such merging

brought little benefits (< 5% improvement) for most of our

programs, we observed a big improvement (up to 40%) for

PageRank due to the relatively simple operations involved

in its edge and vertex functions.

5.3 Adaptive Sparse Incremental Processing

DelZero-Aware incremental refinement processes only

those edges where changes need to be propagated. As it-

erations progress and sparsity increases, we observe that the

number of edges processed by DelZero-Aware incremental

refinement reduces to a similar magnitude as the number

of edges processed without dependency-driven refinement

(i.e., incremental processing that starts from scratch, similar

to Figure 2). Figure 10 shows the performance of DelZero-

Aware incremental refinement and incremental processing

without dependency-driven refinement for Collaborative Fil-

tering [65] on Twitter graph. As we can see, the difference

between edge computationswith andwithout incremental re-

finement reduces as iterations progress; in fact, after iteration

8, they both process nearly the same amount of edges. Since

each edge update in the refinement process involves two

sub-operations (removing old differences and adding new

differences), propagating direct differences can be faster dur-

ing those iterations (also shown in Figure 10). Even though

the two sub-operations get fused using addRemoveChange(),

it still requires computing two differences: oldDelta and

newDelta (see Figure 9).

To further accelerate our incremental processing across

those sparse iterations, we develop an adaptive incremental

processing strategy that dynamically switches to propagate

changes directly during those sparse iterations. Our strategy

initiates the switch automatically by monitoring the time

taken for each iteration, and estimating the time that the

90

DZiG: Sparsity-Aware Incremental Processing of Streaming Graphs EuroSys ’21, April 26–28, 2021, Online, United Kingdom

2 4 6 8 10 12 14 16 18 20
Iteration

0

20

40

60

80

Ex
ec

ut
io

n
Ti

m
e

(s
)

CF

2 4 6 8 10 12 14 16 18 20
Iteration

0

1

2

3

4

Pe
r

It
er

.E
xe

cu
ti

on
Ti

m
e

(s
) CF

0.0

2.5

5.0

7.5

10.0

Edges
Processed

(×
1E

8)

Res-Inc Time
DZIG Time

Res-Inc Edges Processed
DZIG Edges Processed

Figure 10. DelZero-aware incremental refinement (DZiG)

vs. incremental computation without dependency-driven

refinement that starts from scratch (Res-Inc) for

Collaborative Filtering [65] on Twitter [28] graph. Left:

cumulative execution times (in seconds) as iterations

progress; Right: execution times per iteration (in seconds)

and number of edge computations.

iteration would take without dependency-driven refinement.

Since the processing time is dominated by the time taken

to perform edge computations, the number of active edges

(i.e., edges that need to be processed to propagate changes)

in each iteration is linearly correlated with the time taken to

process that iteration. Hence, we use linear regression over

the number of active edges in each iteration along with least

squares error for correlation to estimate the time required for

a given iterationwithout dependency-driven refinement. Ver-

tex computations take a very small amount of time (usually

between 1-5% of iteration time), and so we use the average

time for vertex operations as a constant weight in our model.

Our linear regression based model is lightweight, and

hence, during execution we only need to track two variables:

the number of active edges and the time taken for vertex

operations. The number of active edges is computed using a

parallel reduction over degrees of active vertices (i.e., edges

are not traversed here) which does not consume much time

(between 0.1-2% of the entire iteration time). Moreover, our

model estimates the required time with high accuracy: it

achieves the R2 value 2 of ∼0.99 with absolute error of only

∼0.2 seconds (relative error between 0.1-10%). This is because

the number of active edges dominates the execution time,

which our linear regression based model captures directly.

With such a highly accurate estimation, our adaptive in-

cremental processing strategy identifies the sparse iterations

(estimated time lower than iteration time), and automatically

switches to incremental processing without dependency-

driven refinement. Once the strategy decides to switch, it

needs to activate the set of edges corresponding to incremen-

tal computations that will propagate only a single change. It

does so efficiently via a single vertexMap (i.e., parallel oper-

ation over vertices) that prunes out DelZeros and activates

remaining vertices to be processed.

2 R2 is coefficient of determination which measures how well the observed

outcomes are estimated. R2 value of 1 indicates that the estimations perfectly

fit the data, while an R2 value of 0 indicates a poor fit.

6 Evaluation

We evaluated DZiG to study the performance of our

DelZero-aware incremental refinement, and answer the

following questions.

1. Is our DelZero-aware refinement strategy effective com-

pared to the incremental refinement strategy developed

in state-of-the-art streaming graph processing systems?

2. Does our DelZero-aware refinement strategy push the

boundary of effectiveness of dependency-driven incre-

mental processing compared to the existing solutions?

3. How does our DelZero-aware incremental refinement

perform across different degrees of computation sparsity?

4. Does our adaptive sparse incremental strategy improve

the performance of DZiG?

5. How does the performance of DZiG compare with other

streaming graph processing systems that do not perform

incremental refinement?

We first summarize the implementation details of DZiG,

and then evaluate it thoroughly.

6.1 Implementation Details

DZiG is built on a similar underlying runtime as Graph-

Bolt [32] (C++ using CilkPlus [12] for efficient parallelism

and mimalloc [29] for high performance memory manage-

ment) to retain the efficient parallelization model and various

optimizations (e.g., vertex frontiers and atomic operations).

Dynamic Graph Data Structure: To maintain high local-

ity for parallel vertex and edge operations during refinement

while also ensuring fast insertions and deletions, DZiG uses

dynamic adjacency lists to represent the graph. Each vertex

maintains a contiguous list of incoming and outgoing edges,

along with counters to hold its in-degree and out-degree

information. These lists maintain empty slots at the end of

the list depending on how graph mutation takes place, which

relieves the pressure on memory management during high

mutation rates. The adjacency lists get updated in parallel

to handle (small and large) batches of vertex/edge updates.

A batch of edge updates is first analyzed to verify whether

the empty slots are sufficient to incorporate the new edges,

based on which edge lists are expanded as required. Edge

deletions are applied by swapping the deleted edge with the

last edge in the corresponding edge list and decrementing

the degree counter (resulting in empty slots at the end). Edge

additions are performed by inserting the source/target vertex

id in the first available empty slot.

Our dynamic adjacency lists allow efficiently handling

both, single edge/vertex updates as well as large batches of

simultaneous vertex/edge updates. For example, it takes only

∼300 ms to perform 100K edge additions/deletions; detailed

results in Figure 19 show that the graph mutation times are

competitive.

91

EuroSys ’21, April 26–28, 2021, Online, United Kingdom Mugilan Mariappan, Joanna Che, and Keval Vora

The dependency information (aggregation values) is main-

tained separately from the graph data structure in the form

of arrays. The data type of aggregation values gets supplied

via a static template argument, which allows the framework

to seamlessly track dependencies without exposing their

memory management/addressing issues to the users.

6.2 Experimental Setup

To enable direct comparisons, we evaluate DZiG using

the synchronous graph algorithms used in [32]: PageRank

(PR) [43], Belief Propagation (BP) [24], Co-Training Expec-

tation Maximization (CoEM) [40], Collaborative Filtering

(CF) [65], and Label Propagation (LP) [66]. We did not use

triangle counting since its incremental processing can be di-

rectly achieved in a single iteration. We used five real-world

graphs for our evaluation, as shown in Table 2. Similar to

[32, 50], we obtained an initial fixed point when 50% of edges

were loaded, and streamed in the remaining edges to model

edge insertions, while sampled edges from the loaded graph

for edge deletions. To eliminate the effects of locality, we

shuffled the edges while forming our edge streams.

To evaluate the effects of high mutation rates, we post

batches of multiple edge insertions and deletions at the same

time so that they get incorporated simultaneously. Similar

to [32], we run all algorithms for 10 iterations on all inputs

except YH, and for 5 iterations on YH, unless otherwise

stated. The benefits of DelZero-aware incremental process-

ing become clearly visible in those iterations, and with more

iterations, computations become even more sparse which is

anyways favorable for DelZero-aware processing.

We use two systems for our evaluation. For experiments on

all inputs except YH,we use themachinewith 32 cores (single

socket) running at 2GHz and 231GB RAM. For the large YH

graph, we use r5.24xlarge on Amazon EC2 which has 96

cores (dual socket, 48 cores per socket) running at 2.5GHz

and 748GB RAM. The systems ran 64-bit Ubuntu 16.04 with

compiler GCC 5.4 (compiled with -O3 optimization).

Frameworks: We compare the performance of DZiG

with state-of-the-art dynamic graph processing systems like

GraphBolt [32], Aspen [14], GraphOne [27], LLAMA [31]

and Stinger [15]. Since GraphBolt is the only dynamic graph

processing system that performs incremental processing for

our benchmarks while guaranteeing the same synchronous

processing semantics, we thoroughly evaluate and compare

against GraphBolt. Later, we briefly compare the perfor-

mance with other systems (that do not perform incremen-

tal processing) on traditional graph processing benchmarks

(PageRank and Shortest Paths).

While systems like Differential Dataflow [34] enable incre-

mental processing for general-purpose input streams, their

generality comes at a performance cost. Experiments in [32]

show that an incremental PageRank computation on stream-

ing graphs is an order of magnitude faster in GraphBolt than

Graph Edges Vertices

UKDomain (UK) [7] 1.0B 39.5M

Twitter (TW) [28] 1.5B 41.7M

TwitterMPI (TT) [10] 2.0B 52.6M

Friendster (FT) [16] 2.5B 68.3M

Yahoo (YH) [62] 6.6B 1.4B

Table 2. Real world graphs used in evaluation.

in Differential Dataflow. Hence, we primarily focus on the

performance comparisons with GraphBolt.

Throughout the evaluation, we use the following notations

for different baselines:

• GraphBolt-HP: this is GraphBolt [32] with the best

hand-picked switching (customized for each run) for

its hybrid execution. This baseline captures the best

performance that can be achieved by GraphBolt for every

streaming input, and it is not a practical solution.

• GraphBolt-K: this is GraphBolt [32] with static switching

at K th iteration for its hybrid execution (K ∈ {3, 5, 7}).

• Res-Inc: this restarts execution (i.e., does not reuse results)

upon graph mutation and performs incremental computa-

tion (i.e., propagates changes to enable selective scheduling,

similar to PageRankDelta in [51]).

We follow the experimental methodology as used in Graph-

Bolt [32] where the pending edge mutations to be processed

by each technique is exactly same. Unless otherwise stated,

adaptive processing is turned off in order to thoroughly eval-

uate our DelZero-aware incremental processing.

6.3 Performance

Figure 11 shows the execution times for DZiG, GraphBolt

and Res-Inc across 1K and 1M edge mutations for various

input graphs. As we can see, DZiG consistently achieves

the best performance. Compared to GraphBolt-HP, DZiG

performs better in most cases and nearly the same in the re-

maining few cases, and as expected, GraphBolt-HP is better

than the statically picked GraphBolt-3/5/7, while Res-Inc is

the slowest compared to DZiG and GraphBolt-HP. This is

mainly because DZiG’s DelZero-aware model processes the

least amount of edges, as shown in Figure 12. GraphBolt-HP

processes fewer edges compared to its statically picked vari-

ants, however, since it cannot directly identify DelZeros,

it ends up processing more edges than DZiG. Also, Res-Inc

does not reuse any prior results, and hence it ends up pro-

cessing much more edges.

Without awareness of DelZeros, GraphBolt is useful only

for a few iterations, which is visible with increasing execu-

tion time of GraphBolt-K as K increases. On the other hand,

DZiG retains high performance throughout the execution.

As expected, processing 1K edge mutations is faster in

DZiG than processing 1M edge mutations since the latter

92

DZiG: Sparsity-Aware Incremental Processing of Streaming Graphs EuroSys ’21, April 26–28, 2021, Online, United Kingdom

UK TW TT FT

DZIG

GraphBolt-HP

GraphBolt-3

GraphBolt-5

GraphBolt-7

Res-Inc

0.578 9.59 11.2 21
1.5 10.1 11.7 21.4
3.32 10.1 12.1 23.1
1.91 10.4 11.8 21.5
1.5 10.8 12.6 21.4

4.38 12 15.8 29.6

PR-1K
UK TW TT FT

1.4 4 4.77 1.23
2.7 5.36 6.37 5
2.7 5.36 6.37 5
12.8 91.9 112 87.7
38.9 195 241 278
35.8 91.8 114 164

BP-1K
UK TW TT FT

4.71 10.5 11.1 4.25
7.83 11.9 12.9 8.39
9.16 12.7 13.9 22.6
7.83 11.9 12.9 11.3
8.11 14.8 16.3 8.39
10.2 21.5 26.5 43.1

CF-1K
UK TW TT FT

0.73 5.65 7.64 5.43
0.983 5.53 7.52 5.63
2.05 6.65 9.06 13.6
0.983 5.53 7.52 5.63
1.21 10.4 14 10
5.5 15.8 22.9 31.9

CoEM-1K
UK TW TT FT

0.609 6.62 8.05 6.03
3.18 9.62 12.3 9.25
9.76 14.2 19 28.9
5.36 11.7 13.8 9.25
3.18 22 26.1 16.4
9.11 24.1 31.6 49.8

LP-1K

UK TW TT FT

DZIG

GraphBolt-HP

GraphBolt-3

GraphBolt-5

GraphBolt-7

Res-Inc

2.39 10.6 13.5 25.7
3.74 11.2 14.3 26
3.77 11.2 14.3 26.4
3.74 11.4 14.9 26.2
4.68 12.1 16.3 26.1
4.29 12 15.8 29.8

PR-1M
UK TW TT FT

8.65 31.3 35.7 22.5
7.66 27.2 31.4 22.2
7.66 27.2 31.4 22.2
44.8 128 156 206
83.7 231 285 397
36.6 91.7 114 164

BP-1M
UK TW TT FT

9.13 16.4 18.2 23.4
9.88 16.4 18.5 24.6
9.88 16.4 18.5 26
10.1 19 21.9 24.6
11.7 25.2 29.7 32.7
10.5 21.5 26.4 43.1

CF-1M
UK TW TT FT

2.34 8.33 11 15.1
2.29 8.1 10.8 14.7
2.34 8.11 10.9 15
2.33 8.11 10.9 15
3.74 14 18.9 27.1
5.48 15.8 22.9 31.9

CoEM-1M
UK TW TT FT

4.06 12 14.8 21.2
8.14 16.3 19.8 29.8
10 16.8 21.6 30.7

8.14 21.1 25.3 38.9
9.31 35.8 43.9 70.5
9.1 24.1 31.8 49.7

LP-1M

Figure 11. Execution times (in seconds) for DZiG, GraphBolt and Res-Inc with 1K and 1M edge mutations. The cells are

colored to easily compare the performance within each column: a darker shade in the column (green in colored mode and gray

in gray-scale) indicates faster execution time in that column, and similarly a lighter shade indicates slower execution time in

that column.

0.0

0.5

1.0

TT

PR

0.02
0.04

0.04

1.85 1.20 2.17
BP CF CoEM LP

1K 1M
0.0

0.5

1.0

FT

1K 1M
1E-4

0.02
0.02

1.42 1.05 2.02

1K 1M
0.01

0.03
0.03

1K 1M 1K 1M

DZIG GraphBolt-HP GraphBolt-3 GraphBolt-5 GraphBolt-7

Ed
ge

s
Pr

oc
es

se
d

(N
or

m
.)

Figure 12. Number of edges processed by DZiG and GraphBolt normalized w.r.t. Res-Inc.

1K 1M
0.0

0.2

0.4

Ed
ge

s
Pr

oc
es

se
d

(N
or

m
.)

8E-4
9E-4

PR

1K 1M
3E-4

0.67
BP

1K 1M
6E-3
7E-3

CF

1K 1M
7E-3
9E-3

CoEM

1K 1M
2E-4
4E-4

LP

DZIG GraphBolt-HP GraphBolt-3 GraphBolt-5

Figure 13. Number of edges processed by DZiG and GraphBolt on YH graph normalized w.r.t. Res-Inc.

PR BP CF CoEM LP

DZIG
GraphBolt-HP

GraphBolt-3
GraphBolt-5

Res-Inc

1.21 4.51 6.89 3.54 2.46
3.73 14.1 12.3 3.05 3.68
5.35 14.4 16.7 6.29 9.31
4.54 14.7 13.5 3.05 5.41
4.97 70.6 17.7 13.2 13.2

1K
PR BP CF CoEM LP

1.71 10.2 9.45 4.2 2.82
4.49 84.2 15.3 5.47 4.34
5.45 84.2 16.4 6.56 9.14
4.66 87.6 15.6 5.47 5.96
5.27 68.1 17.4 13 12.7

1M

Figure 14. Execution times (in seconds) for DZiG,

GraphBolt and Res-Inc on YH graph with 1K and 1M edge

mutations on r5.24xlarge.

impacts more intermediate results than 1K edge mutations,

demanding more edges to be processed. Furthermore, it is

interesting to observe that the number of edge computations

by DZiG in BP and CF with 1K edge mutations is much

lower than that with 1M edge mutations; in fact, for BP on

FT DZiG processes 0.01% of the edges processed by Res-Inc.

This directly results in high performance for BP and CF

that process 1K edge mutations in just 1.23 seconds and

4.25 seconds respectively. GraphBolt-HP on the other hand

processes 1.7-2.66% of the edges, resulting in 5 seconds and

8.39 seconds respectively.

For the larger Yahoo graph (YH) we evaluate DZiG on

r5.24xlarge with 96 cores. Figure 14 shows the execution

times, and Figure 13 shows the corresponding number of

edge computations. Our observations are consistent: DZiG is

fastest across nearly all cases, and processing 1K mutations

is faster than 1M mutations.

6.4 Scaling with Mutation Batch Sizes

Figure 15 shows the execution times for DZiG, GraphBolt

and Res-Inc. Since performance appears very close, each

plot is divided into two subplots: the top subplot shows

performance of DZiG and GraphBolt-HP (here DZiG-AE

represents DZiG with adaptive execution turned on); and the

bottom subplot shows performance for different GraphBolt

variants. Finally, Figure 16 shows the corresponding number

of edges processed.

As the mutation batch size increases, more number of

edges get processed which increases the execution times

for both DZiG and GraphBolt. Since Res-Inc restarts from

93

EuroSys ’21, April 26–28, 2021, Online, United Kingdom Mugilan Mariappan, Joanna Che, and Keval Vora

0

20

PR

0

100

BP

0

20

40
CF

0

20

CoEM

0

25

50
LP

1 10 10
0 1K 10

K
10

0K 1M 10
M

10
0M

Batch Sizes

0

20

1 10 10
0 1K 10

K
10

0K 1M 10
M

10
0M

Batch Sizes

0

100

1 10 10
0 1K 10

K
10

0K 1M 10
M

10
0M

Batch Sizes

0

20

40

1 10 10
0 1K 10

K
10

0K 1M 10
M

10
0M

Batch Sizes

0

20

1 10 10
0 1K 10

K
10

0K 1M 10
M

10
0M

Batch Sizes

0

25

50

Res-Inc DZIG DZIG-AE GraphBolt-HP GraphBolt-3 GraphBolt-5 GraphBolt-7

Ex
ec

ut
io

n
Ti

m
e

(s
)

Figure 15. Scaling with mutation batch sizes. Execution times (in seconds) for DZiG, GraphBolt and Res-Inc on TT graph.

DZiG-AE represents DZiG with adaptive execution turned on. Since performance of different executions appear very close to

each other, the numbers are separated across two subplots for each benchmark: the top subplot shows performance of DZiG,

DZiG-AE and GraphBolt-HP; and the bottom subplot shows performance for different GraphBolt variants.

1 10 10
0 1K 10

K
10

0K 1M 10
M

10
0M

Batch Sizes

0.00

0.25

0.50

0.75

1.00

Ed
ge

s
Pr

oc
es

se
d

(N
or

m
.) PR

1 10 10
0 1K 10

K
10

0K 1M 10
M

10
0M

Batch Sizes

BP

1 10 10
0 1K 10

K
10

0K 1M 10
M

10
0M

Batch Sizes

CF

1 10 10
0 1K 10

K
10

0K 1M 10
M

10
0M

Batch Sizes

CoEM

1 10 10
0 1K 10

K
10

0K 1M 10
M

10
0M

Batch Sizes

LP

DZIG GraphBolt-HP

Figure 16. Number of edges processed by DZiG and GraphBolt normalized w.r.t. Res-Inc for different mutation batch sizes.

beginning, it remains unaffected with the number of edge

mutations, and hence it exhibits steady performance. The

key observation here is that our DelZero-aware incremental

refinement strategy pushes the boundary of effectiveness of

dependency-driven processing for streaming graphs to over

10 million simultaneous mutations (at least a few orders of

magnitude higher compared to GraphBolt): this is visible by

comparing the intersection points of DZiG with Res-Inc vs.

GraphBolt and Res-Inc. GraphBolt has to rely on hybrid ex-

ecution which turns off its dependency-driven processing,

and with static tuning it gives different (often low) perfor-

mance. DZiG on the other hand delivers high performance

even without adaptive execution, i.e., purely based on its

DelZero-aware dependency-driven processing.

With 100 million edge mutations, the number of edge

computations by DZiG rises compared to Res-Inc, mainly

because of two reasons. First, DelZero-aware incremental

processing requires two sub-operations per edge update (re-

moving old difference and adding new difference, even when

fused together). And second, each iteration processes the

set of mutated edges (unless DelZeros) to propagate direct

changes (recall direct changes from Section 4.2), and with

100 million edge mutations, this set becomes large. For ex-

ample, DZiG on PR processes ∼17% more edges compared to

Res-Inc, while propagating direct changes itself takes ∼20%

edge computations.

Benefits of Adaptive Execution: Finally, the benefits of

adaptive execution show up as the number of mutations per

batch increase. Figure 15 shows that DZiG-AE (DZiG with

adaptive execution turned on) is often faster than DZiG for

10 million and 100 million edge mutations. In fact, CF ben-

efits most from adaptive execution which brings down the

execution time below Res-Inc for 100 million edge mutations;

this is mainly because edge computations in CF involve more

operations than those in other benchmarks. For PR on the

other hand, even though DZiG-AE gives better performance

over DZiG for 100 million edge mutations, DZiG-AE does

not noticeably bring down the execution time below Res-Inc.

This is because our automatic switching strategy is conserva-

tive as it first observes whether the execution took more time

than expected, and hence, it misses the switching point by

one iteration which affects the final performance. Neverthe-

less, the adaptive execution accelerates DZiG’s processing

by up to ∼1.2×, mainly because of its highly accurate and

lightweight estimation model.

6.5 Sensitivity to Computation Sparsity

We study how DZiG performs across different degrees of

computation sparsity. To control the computation sparsity,

we vary the threshold value (ϵ) that defines DelZeros. A
lower tolerance value represents the case where computa-

tions are more sensitive to value changes (i.e., less sparsity),

whereas a higher value of tolerance means that computa-

tions are less sensitive to value changes (i.e., more sparsity).

Figure 17 shows the performance of DZiG, GraphBolt and

Res-Inc for PR and LP when the tolerance is varied from 0.2

(higher sparsity) to 0.001 (lower sparsity). DZiG reacts to

94

DZiG: Sparsity-Aware Incremental Processing of Streaming Graphs EuroSys ’21, April 26–28, 2021, Online, United Kingdom

0.0
01

0.0
05 0.0

1
0.0

5 0.1 0.2
0.00

0.25

0.50

0.75

1.00

Ex
ec

ut
io

n
Ti

m
e

(s
)

PR

0.0
01

0.0
05 0.0

1
0.0

5 0.1 0.2
0.0

0.2

0.4

0.6

0.8

1.0

Ex
ec

ut
io

n
Ti

m
e

(s
)

LP

0

5

10

15

20

Edges
Processed

(N
orm

.)

0

20

40

Edges
Processed

(N
orm

.)

Res-Inc
DZIG

GraphBolt-HP DZIG Edges Processed (Norm. w.r.t. Res-Inc)
GraphBolt-HP Edges Processed (Norm. w.r.t. Res-Inc)

Figure 17. Sensitivity to value changes. Execution time (in

seconds) for DZiG, GraphBolt and Res-Inc, and number of

edges processed by DZiG and GraphBolt normalized w.r.t.

Res-Inc with varying tolerances that define DelZeros.

changes the same way as GraphBolt and Res-Inc; when spar-

sity is lower (lower values of tolerance), minor changes need

to get propagated across edges, which increases the number

of transitive changes processed by DZiG. When sparsity in-

creases, DZiG performs less work since only major changes

get propagated.

6.6 Memory Overhead

DZiG tracks aggregation values at vertex-level which con-

sumes memory in addition to the dynamic graph data struc-

ture. Figure 18 shows the increase in memory footprint per

iteration by DZiG and GraphBolt compared to Res-Inc for

various graph algorithms and inputs. As we can see, the

increase for DZiG is only 3-13% across all the algorithms,

which is similar to the increase for GraphBolt. DZiG shows a

slightly lesser increase than GraphBolt because the dynamic

adjacency lists in DZiG consume a bit more memory (to hold

empty slots) compared to the compressed sparse row/column

(CSR/CSC) representations used in GraphBolt.

Since the aggregation value types are different across dif-

ferent graph algorithms, the overall increase in memory

footprint is also different depending on the size of the aggre-

gation values. For instance, CF tracks 3× more information

per vertex than PR, and hence it requires more memory

compared to PR where memory increases by only 3-5%.

6.7 Comparison with Other Systems

Even though these systems do not perform incremental re-

finement that guarantees synchronous processing semantics

(unlike DZiG and GraphBolt), we compare the performance

of DZiG with Aspen, GraphOne, LLAMA and Stinger on

traditional graph processing algorithms: PageRank and SSSP.

For cases where benchmarks were not implemented in the

their public repository, we implemented the fastest version

(e.g., incremental PageRank from [51]); and for cases where

multiple implementations of the same benchmark were avail-

able, we use the fastest version that gave correct results.

Aspen’s public repository only supports undirected graphs,

which we evaluate.

DZIG
UK

GB DZIG
TW

GB DZIG
TT

GB DZIG
FT

GB
PR
BP
CF

CoEM
LP

4.8% 5.4% 3.8% 6.1% 3.9% 4.3% 4.1% 4.7%
10.3% 10.3% 9.0% 8.9% 10.0% 9.1% 9.6% 8.8%
12.9% 19.0% 11.4% 15.7% 11.4% 17.1% 12.1% 18.3%
5.4% 7.7% 4.5% 4.4% 4.5% 4.4% 4.9% 4.9%
7.9% 7.6% 6.7% 6.5% 5.6% 6.5% 7.0% 6.0%

Figure 18. Increase in memory for DZiG and

GraphBolt (GB) w.r.t. Res-Inc.

As shown in Figure 19, both DZiG and GraphBolt are

competitive mainly because of their dependency-driven in-

cremental refinement. Furthermore, across all executions,

DZiG performs fastest due to its DelZero-aware incremen-

tal refinement strategy. While DZiG uses a simple dynamic

adjacency list based data structure, it is efficient enough to

retain high end-to-end performance (i.e., including graphmu-

tation and PageRank/SSSP processing time). This is because

DZiG’s data structure provides high locality for parallel ver-

tex and edge operations during processing, while at the same

time enabling fast graph ingestion. Finally, we observed that

batched mutation with DZiG’s data structure is faster than

recent works like GraphOne.

7 Related Work

We group several dynamic graph processing solutions based

on their support for continuous analysis over streaming

graphs, and temporal analysis over static graph snapshots.

Streaming Graph Processing Systems: These systems al-

low continuous analysis over streaming graphs. While most

of these systems perform incremental processing to compute

based on changes in graph structure, only GraphBolt [32]

and KickStarter [57] perform dependency-driven incremen-

tal processing. GraphBolt guarantees BSP semantics using

its dependency-driven incremental refinement strategy (dis-

cussed in detail in Section 2.2). KickStarter focuses on mono-

tonic graph algorithms like shortest paths and connected

components that do not require BSP semantics to guarantee

correctness. It maintains the dependency information in the

form of dependency trees, and performs an incremental trim-

ming process that adjusts the values based on monotonic

relationships.

While other systems like Tornado [50], Kineograph [11]

and GraphIn [48] perform incremental computation, they

do so by triggering the user functions based on graph up-

dates, and allowing the changes to propagate throughout

the graph until convergence. Since they do not maintain

correct dependencies during incremental computation, they

cannot guarantee BSP semantics like DZiG. Tornado uses a

bounded async iterations to process the user queries upon

graph structure updates. GraphIn identifies the vertices that

could be potentially impacted by graph updates using tag

propagation, and restarts computation from scratch for those

95

EuroSys ’21, April 26–28, 2021, Online, United Kingdom Mugilan Mariappan, Joanna Che, and Keval Vora

G PR SSSP

DZIG

GraphBolt

Aspen

GraphOne

LLAMA

Stinger

0.06 8.62 0.05

1.15 9.04 0.05

1E-4 29.48 3.31

4E-3 19.91 13.24

x 20.55 2.77

0.02 431.18 145.15

Batch Size = 1
G PR SSSP

0.09 10.00 0.04

1.13 10.55 0.04

3E-4 29.89 3.34

0.07 19.91 12.58

x 20.55 2.77

0.03 422.19 146.55

Batch Size = 10
G PR SSSP

0.09 10.56 0.05

1.17 11.14 0.05

2E-3 29.29 3.31

0.09 19.73 13.09

x 20.55 2.77

2.88 437.11 145.12

Batch Size = 100
G PR SSSP

0.17 11.20 0.06

1.27 11.70 0.06

6E-3 29.80 3.31

0.26 19.87 12.90

x 20.55 2.77

2.02 417.95 144.39

Batch Size = 1K
G PR SSSP

0.33 11.20 0.04

1.42 12.25 0.04

7E-3 29.68 3.34

1.64 20.02 12.58

x 20.55 2.77

7.06 488.78 146.55

Batch Size = 10K

Figure 19. Graph mutation (G) time (in seconds), and execution times (in seconds) for PageRank (PR) and Single Source

Shortest Path (SSSP) with different mutation batch sizes. LLAMA does not provide graph mutation support (marked with ×).

identified vertices. [52] uses incremental GIM-V (generalized

iterative matrix vector multiplication) to perform incremen-

tal computation. GraphInc [8] performs incremental process-

ing by saving all messages across edges along with computed

states (which requires large storage) and replaying the com-

putation to incorporate the changes. Finally, systems like

GraphJet [49] and [20] are targeted towards custom graph

bases analytics like real-time content recommendations.

Systems like LLAMA [31], STINGER [15], Aspen [14] and

GraphOne [27] focus on designing efficient dynamic graph

data structures, and their processing units do not support

incremental computation. LLAMA, STINGER and GraphOne

use adjacency lists with blocks of edges for efficient insertion,

and indexing strategies for efficient retrieval, while Aspen

uses C-Trees for efficient fine-grained multiversioning. We

compare the performance of DZiG with these systems in

Section 6.7 and show that DZiG’s dynamic adjacency lists

enable fast graph mutation and allow DZiG to retain high

end-to-end efficiency.

Finally, while graph databases like [38, 42] allow the graph

structure to be modified, Graphflow [25] is an active graph

database that supports continuous subgraph queries using a

new incremental view maintenance algorithm.

Systems for Processing Graph Snapshots: Systems like

GraphTau [22], ImmortalGraph [35], Chronos [21] and [56]

operate on a group of temporally-related graph snapshots

that capture the evolution of the graph structure over time.

Since the graph snapshots are structurally similar to each

other (due to being temporally correlated), these systems

use incremental computation by reusing the results com-

puted for a snapshot to compute those for another snapshot.

They feed results across consecutive graph snapshots, and

propagate the changes throughout the graph until conver-

gence. Such style of incremental processing is suitable for

certain kinds of self-fixing graph algorithms like shortest

paths, but it does not guarantee BSP semantics. Since tem-

poral graph snapshots can be processed individually as well

(without incremental computation), static graph processing

systems [17, 18, 26, 30, 36, 39, 45, 47, 51, 55, 58, 59, 61, 67]

can also be used, but at the expense of high performance

costs.

Finally, LiveGraph [68] is a recent graph storage system

for both, transactional graph and graph analytics workloads.

It employs Transactional Edge Log (TEL) structure and main-

tains low latency with high throughput.

Generalized Stream Processing Systems & Their

Derivatives: Stream processing systems like [1, 2, 4, 5, 9,

37, 44, 46, 53, 63, 64] operate on generalized streams of data

tuples to support continuous or real-time analysis. Differ-

ential Dataflow [34] extends Naiad’s timely dataflow with

incremental processing operators that capture value changes,

thereby allowing incremental computation as the input tu-

ples change. The generality of these systems allow devel-

opment of streaming graph-based analytics on top of them.

However, as shown in [32], this generality comes at a per-

formance cost that graph systems avoid.

Custom Incremental Graph Solutions: Several incre-

mental graph algorithms have been developed in litera-

ture that operate on changing graph structures. Since these

works are problem-specific, they develop tailored solutions

to efficiently solve the given graph problem. For example,

[3, 13, 23, 33] propose incremental PageRank algorithms and

use custom techniques to optimize for faster convergence.

Incremental View Maintenance (IVM) algorithms [6, 19, 41],

on the other hand, maintain a consistent view of the input

by reusing computed results to handle general queries. As

discussed in [34], they require heavy recomputation.

8 Conclusion

We developed DZiG, a streaming graph processing system

that retains efficiency in presence of sparse computations

and guarantees BSP semantics. DZiG’s DelZero-aware re-

finement strategy expresses incremental computations recur-

sively to safely maintain sparsity throughout the refinement

process. Our evaluation showed that DZiG outperforms state-

of-the-art systems, and our DelZero-aware refinement strat-

egy pushes the boundary of dependency-driven processing

for streaming graphs by orders of magnitude.

Acknowledgements

We would like to thank our shepherd Tim Harris and the

anonymous reviewers for their valuable and thorough feed-

back. This work is supported by the Natural Sciences and

Engineering Research Council of Canada.

96

DZiG: Sparsity-Aware Incremental Processing of Streaming Graphs EuroSys ’21, April 26–28, 2021, Online, United Kingdom

References
[1] Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel,

Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag

Maskey, Alex Rasin, Esther Ryvkina, et al. The Design of the Borealis

Stream Processing Engine. In Conference on Innovative Data Systems

Research (CIDR ’05), volume 5, pages 277–289, 2005.

[2] Rajagopal Ananthanarayanan, Venkatesh Basker, Sumit Das, Ashish

Gupta, Haifeng Jiang, Tianhao Qiu, Alexey Reznichenko, Deomid

Ryabkov, Manpreet Singh, and Shivakumar Venkataraman. Photon:

Fault-tolerant and Scalable Joining of Continuous Data Streams. In

Proceedings of the ACM International Conference on Management of

Data (SIGMOD ’13), pages 577–588, 2013.

[3] Bahman Bahmani, Abdur Chowdhury, and Ashish Goel. Fast Incremen-

tal and Personalized PageRank. Proceedings of the VLDB Endowment

(PVLDB ’10), 4(3):173–184, 2010.

[4] Hari Balakrishnan, Magdalena Balazinska, Don Carney, Uğur Çet-

intemel, Mitch Cherniack, Christian Convey, Eddie Galvez, Jon Salz,

Michael Stonebraker, Nesime Tatbul, et al. Retrospective on Aurora.

The VLDB Journal, 13(4):370–383, 2004.

[5] Pramod Bhatotia, Umut A Acar, Flavio P Junqueira, and Rodrigo Ro-

drigues. Slider: Incremental Sliding Window Analytics. In Proceedings

of the International Middleware Conference (Middleware ’14), pages

61–72, 2014.

[6] Jose A. Blakeley, Per-Ake Larson, and Frank Wm Tompa. Efficiently

Updating Materialized Views. In Proceedings of the ACM International

Conference on Management of Data (SIGMOD ’86), pages 61–71, 1986.

[7] Paolo Boldi and Sebastiano Vigna. The WebGraph Framework I: Com-

pression Techniques. In Proceedings of the International Conference on

World Wide Web (WWW ’04), pages 595–601, 2004.

[8] Zhuhua Cai, Dionysios Logothetis, and Georgos Siganos. Facilitating

Real-Time Graph Mining. In Proceedings of the International Workshop

on Cloud Data Management (CloudDB ’12), pages 1–8, 2012.

[9] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl,

Seif Haridi, and Kostas Tzoumas. Apache Flink™: Stream and Batch

Processing in a Single Engine. Bulletin of the IEEE Computer Society

Technical Committee on Data Engineering, 38:28–38, 2015.

[10] Meeyoung Cha, Hamed Haddadi, Fabricio Benevenuto, and Krishna P.

Gummadi. Measuring User Influence in Twitter: The Million Follower

Fallacy. In Proceedings of the International AAAI Conference on Web

and Social Media (ICWSM ’10), pages 10–17, 2010.

[11] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng,

Ming Wu, Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen. Ki-

neograph: Taking the Pulse of a Fast-changing and Connected World.

In Proceedings of the European Conference on Computer Systems (Eu-

roSys ’12), pages 85–98, 2012.

[12] CilkPlus: https://www.cilkplus.org/.

[13] Prasanna Desikan, Nishith Pathak, Jaideep Srivastava, and Vipin Ku-

mar. Incremental Page Rank Computation on Evolving Graphs. In

Proceedings of the International Conference on World Wide Web (WWW

’05), pages 1094–1095, 2005.

[14] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. Low-Latency

Graph Streaming Using Compressed Purely-Functional Trees. In Pro-

ceedings of the ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI ’19), page 918–934, 2019.

[15] David Ediger, Rob Mccoll, Jason Riedy, and David A. Bader. STINGER:

High Performance Data Structure for Streaming Graphs. In IEEE

Conference on High Performance Extreme Computing (HPEC ’12), pages

1–5, 2012.

[16] Friendster network dataset. http://konect.uni-koblenz.de/networks/

friendster. KONECT, 2015.

[17] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and

Carlos Guestrin. PowerGraph: Distributed Graph-parallel Computa-

tion on Natural Graphs. In USENIX Symposium on Operating Systems

Design and Implementation (OSDI ’12), pages 17–30, 2012.

[18] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw,

Michael J. Franklin, and Ion Stoica. GraphX: Graph Processing in a

Distributed Dataflow Framework. In USENIX Symposium on Operating

Systems Design and Implementation (OSDI ’14), pages 599–613, 2014.

[19] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Main-

taining Views Incrementally. In Proceedings of the ACM International

Conference on Management of Data (SIGMOD ’93), pages 157–166, 1993.

[20] Pankaj Gupta, Venu Satuluri, Ajeet Grewal, Siva Gurumurthy,

Volodymyr Zhabiuk, Quannan Li, and Jimmy Lin. Real-Time Twitter

Recommendation: Online Motif Detection in Large Dynamic Graphs.

Proceedings of the VLDB Endowment (PVLDB ’14), 7(13):1379–1380,

2014.

[21] Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan Yang, Lidong

Zhou, Vijayan Prabhakaran, Wenguang Chen, and Enhong Chen.

Chronos: A Graph Engine for Temporal Graph Analysis. In Proceedings

of the European Conference on Computer Systems (EuroSys ’14), pages

1:1–1:14, 2014.

[22] Anand Padmanabha Iyer, Li Erran Li, Tathagata Das, and Ion Stoica.

Time-Evolving Graph Processing at Scale. In Proceedings of the Interna-

tional Workshop on Graph Data Management Experiences and Systems

(GRADES ’16), page 5, 2016.

[23] Sepandar Kamvar, Taher Haveliwala, and Gene Golub. Adaptive meth-

ods for the computation of PageRank. Linear Algebra and its Applica-

tions, 386:51–65, 2003.

[24] U Kang, Duen Horng, and Christos Faloutsos. Inference of Beliefs on

Billion-Scale Graphs. In Large-scale Data Mining: Theory and Applica-

tions (LDMTA ’10), 2010.

[25] Chathura Kankanamge, Siddhartha Sahu, Amine Mhedbhi, Jeremy

Chen, and Semih Salihoglu. Graphflow: An active graph database. In

Proceedings of the ACM International Conference on Management of

Data (SIGMOD ’17), pages 1695–1698, 2017.

[26] Pradeep Kumar and H. Howie Huang. G-Store: High-Performance

Graph Store for Trillion-Edge Processing. In Proceedings of the In-

ternational Conference for High Performance Computing, Networking,

Storage and Analysis, SC ’16, 2016.

[27] Pradeep Kumar and H. Howie Huang. GRAPHONE: A Data Store for

Real-time Analytics on Evolving Graphs. In Proceedings of the USENIX

Conference on File and Storage Technologies (FAST ’19), pages 249–263,

2019.

[28] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What

is Twitter, A Social Network or a News Media? In Proceedings of

the International Conference on World Wide Web (WWW ’10), pages

591–600, 2010.

[29] Daan Leijen, Benjamin Zorn, and Leonardo de Moura. Mimalloc:

Free List Sharding in Action. In Asian Symposium on Programming

Languages and Systems (APLAS ’19), pages 244–265, 2019.

[30] Heng Lin, Xiaowei Zhu, Bowen Yu, Xiongchao Tang, Wei Xue, Wen-

guang Chen, Lufei Zhang, Torsten Hoefler, Xiaosong Ma, Xin Liu,

Weimin Zheng, and Jingfang Xu. ShenTu: Processing Multi-Trillion

Edge Graphs on Millions of Cores in Seconds. In Proceedings of the

International Conference for High Performance Computing, Networking,

Storage, and Analysis (SC ’18), 2018.

[31] Peter Macko, Virendra J Marathe, Daniel WMargo, andMargo I Seltzer.

LLAMA: Efficient graph analytics using Large Multiversioned Arrays.

In IEEE International Conference on Data Engineering (ICDE ’15), pages

363–374, April 2015.

[32] Mugilan Mariappan and Keval Vora. GraphBolt: Dependency-Driven

Synchronous Processing of Streaming Graphs. In Proceedings of the

European Conference on Computer Systems (EuroSys ’19), pages 25:1–

25:16, 2019.

[33] Frank McSherry. A Uniform Approach to Accelerated PageRank Com-

putation. In Proceedings of the International Conference on World Wide

Web (WWW ’05), pages 575–582, 2005.

[34] Frank McSherry, Derek G. Murray, Rebecca Isaacs, and Michael Is-

ard. Differential Dataflow. In Conference on Innovative Data Systems

97

EuroSys ’21, April 26–28, 2021, Online, United Kingdom Mugilan Mariappan, Joanna Che, and Keval Vora

Research (CIDR ’13), 2013.

[35] Youshan Miao, Wentao Han, Kaiwei Li, Ming Wu, Fan Yang, Lidong

Zhou, Vijayan Prabhakaran, Enhong Chen, and Wenguang Chen. Im-

mortalGraph: A System for Storage and Analysis of Temporal Graphs.

ACM Transactions on Storage (TOS), 11(3):14:1–14:34, 2015.

[36] Svilen R. Mihaylov, Zachary G. Ives, and Sudipto Guha. REX: Recur-

sive, Delta-Based Data-Centric Computation. Proceedings of the VLDB

Endowment (PVLDB ’12), 5(11):1280–1291, 2012.

[37] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul

Barham, and Martín Abadi. Naiad: A Timely Dataflow System. In

ACM Symposium on Operating Systems Principles (SOSP ’13), pages

439–455, 2013.

[38] Neo4J. www.neo4j.com.

[39] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A Lightweight

Infrastructure for Graph Analytics. In ACM Symposium on Operating

Systems Principles (SOSP ’13), pages 456–471, 2013.

[40] Kamal Nigam and Rayid Ghani. Analyzing the Effectiveness and Ap-

plicability of Co-training. In Proceedings of the International Conference

on Information and Knowledge Management (CIKM ’00), pages 86–93,

2000.

[41] Vivek Nigam, Limin Jia, Boon Thau Loo, and Andre Scedrov. Maintain-

ing Distributed Logic Programs Incrementally. In Computer Languages,

Systems & Structures, pages 125–136, 2011.

[42] OrientDB. https://orientdb.com/.

[43] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.

The PageRank Citation Ranking: Bringing Order to theWeb. Technical

report, Stanford University, 1998.

[44] Frederick Reiss, Kurt Stockinger, Kesheng Wu, Arie Shoshani, and

Joseph M. Hellerstein. Enabling Real-Time Querying of Live and

Historical Stream Data. In International Conference on Scientific and

Statistical Database Management (SSDBM ’07), pages 28–, 2007.

[45] Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic, and Willy

Zwaenepoel. Chaos: Scale-out Graph Processing from Secondary

Storage. In ACM Symposium on Operating Systems Principles (SOSP

’15), pages 410–424, 2015.

[46] Pratanu Roy, Arijit Khan, and Gustavo Alonso. Augmented Sketch:

Faster and More Accurate Stream Processing. In Proceedings of the

ACM International Conference on Management of Data (SIGMOD ’16),

pages 1449–1463, 2016.

[47] Semih Salihoglu and Jennifer Widom. GPS: A Graph Processing Sys-

tem. In International Conference on Scientific and Statistical Database

Management (SSDBM ’13), pages 22:1–22:12, 2013.

[48] Dipanjan Sengupta, Narayanan Sundaram, Xia Zhu, Theodore LWillke,

Jeffrey Young, Matthew Wolf, and Karsten Schwan. GraphIn: An

Online High Performance Incremental Graph Processing Framework.

In Proceedings of the International European Conference on Parallel and

Distributed Computing (Euro-Par ’16), pages 319–333, 2016.

[49] Aneesh Sharma, Jerry Jiang, Praveen Bommannavar, Brian Larson, and

Jimmy Lin. GraphJet: Real-time Content Recommendations at Twitter.

Proceedings of the VLDB Endowment (PVLDB ’16), 9(13):1281–1292,

2016.

[50] Xiaogang Shi, Bin Cui, Yingxia Shao, and Yunhai Tong. Tornado:

A System For Real-Time Iterative Analysis Over Evolving Data. In

Proceedings of the ACM International Conference on Management of

Data (SIGMOD ’16), pages 417–430, 2016.

[51] Julian Shun and Guy E. Blelloch. Ligra: A Lightweight Graph Pro-

cessing Framework for Shared Memory. In Proceedings of the ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP ’13), pages 135–146, 2013.

[52] Toyotaro Suzumura, Shunsuke Nishii, and Masaru Ganse. Towards

Large-scale Graph Stream Processing Platform. In Proceedings of the

International Conference on World Wide Web (WWW ’14), pages 1321–

1326, 2014.
[53] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy,

Jignesh M Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade,

Maosong Fu, Jake Donham, et al. Storm @ Twitter. In Proceedings of

the ACM International Conference on Management of Data (SIGMOD

’14), pages 147–156, 2014.

[54] Leslie G Valiant. A Bridging Model for Parallel Computation. Com-

munications of the ACM, 33(8):103–111, 1990.

[55] Keval Vora. Lumos: Dependency-Driven Disk-based Graph Processing.

In USENIX Annual Technical Conference (USENIX ATC ’19), pages 429–

442, 2019.

[56] Keval Vora, Rajiv Gupta, and Guoqing Xu. Synergistic Analysis of

Evolving Graphs. ACM Transactions on Architecture and Code Opti-

mization (TACO ’16), 13(4):32, 2016.

[57] Keval Vora, Rajiv Gupta, and Guoqing Xu. KickStarter: Fast and Accu-

rate Computations on Streaming Graphs via Trimmed Approximations.

In Proceedings of the International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS ’17), pages

237–251, 2017.

[58] Keval Vora, Sai Charan Koduru, and Rajiv Gupta. ASPIRE: Exploiting

Asynchronous Parallelism in Iterative Algorithms Using a Relaxed

Consistency Based DSM. In Proceedings of the ACM International

Conference on Object Oriented Programming Systems Languages & Ap-

plications (OOPSLA ’14), pages 861–878, 2014.

[59] Keval Vora, Guoqing (Harry) Xu, and Rajiv Gupta. Load the Edges You

Need: A Generic I/O Optimization for Disk-based Graph Processing. In

USENIX Annual Technical Conference (USENIX ATC ’17), pages 507–522,

2016.

[60] Wikipedia links, english network dataset. http://konect.uni-koblenz.

de/networks/wikipedia_link_en. KONECT, 2017.

[61] Ming Wu, Fan Yang, Jilong Xue, Wencong Xiao, Youshan Miao, Lan

Wei, Haoxiang Lin, Yafei Dai, and Lidong Zhou. GraM: Scaling Graph

Computation to the Trillions. In Proceedings of the ACM Symposium

on Cloud Computing (SoCC ’15), pages 408–421, 2015.

[62] Yahoo! Webscope Program. http://webscope.sandbox.yahoo.com/.

[63] Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, and Ion

Stoica. Discretized Streams: An Efficient and Fault-Tolerant Model

for Stream Processing on Large Clusters. In USENIX Workshop on Hot

Topics in Cloud Computing (HotCloud ’12), 2012.

[64] Erik Zeitler and Tore Risch. Massive Scale-out of Expensive Contin-

uous Queries. In Proceedings of the VLDB Endowment (PVLDB ’11),

pages 1181–1188, 2011.

[65] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan.

Large-Scale Parallel Collaborative Filtering for the Netflix Prize. In

International Conference on Algorithmic Applications in Management

(AAIM ’08), pages 337–348, 2008.

[66] Xiaojin Zhu and Zoubin Ghahramani. Learning from Labeled and

Unlabeled Data with Label Propagation. In CMU Technical Report

CALD-02-107, 2002.

[67] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma.

Gemini: A Computation-Centric Distributed Graph Processing System.

In USENIX Symposium on Operating Systems Design and Implementa-

tion (OSDI ’16), pages 301–316, 2016.

[68] Xiaowei Zhu, Guanyu Feng, Marco Serafini, Xiaosong Ma, Jiping

Yu, Lei Xie, Ashraf Aboulnaga, and Wenguang Chen. LiveGraph:

A Transactional Graph Storage System with Purely Sequential Adja-

cency List Scans. Proceedings of the VLDB Endowment (PVLDB ’20),

13(7):1020–1034, 2020.

98

